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3H-1,2-dithiole-3-thione (D3T) and its analogues 4-methyl-5-
pyrazinyl-3H-1,2-dithiole-3-thione (OLT) and 5-tert-butyl-3H-1,
2-dithiole-3-thione (TBD) are chemopreventive agents that block
or diminish early stages of carcinogenesis by inducing activities of
detoxication enzymes. While OLT has been used in clinical trials,
TBD has been shown to be more efficacious and possibly less toxic
than OLT in animals. Here, we utilize a robust and high-resolution
chemical genomics procedure to examine the pharmacological struc-
ture–activity relationships of these compounds in livers of male rats
by microarray analyses. We identified 226 differentially expressed
genes that were common to all treatments. Functional analysis iden-
tified the relation of these genes to glutathione metabolism and the
nuclear factor, erythroid derived 2-related factor 2 pathway (Nrf2)
that is known to regulate many of the protective actions of dithiole-
thiones. OLT and TBD were shown to have similar efficacies and
both were weaker than D3T. In addition, we identified 40 genes
whose responses were common to OLT and TBD, yet distinct from
D3T. As inhibition of cytochrome P450 (CYP) has been associated
with the effects of OLT on CYP expression, we determined the half
maximal inhibitory concentration (IC50) values for inhibition of
CYP1A2. The rank order of inhibitor potency was OLT� TBD�
D3T, with IC50 values estimated as 0.2, 12.8 and >100 mM, respec-
tively. Functional analysis revealed that OLT and TBD, in addition
to their effects on CYP, modulate liver lipid metabolism, especially
fatty acids. Together, these findings provide new insight into the
actions of clinically relevant and lead dithiolethione analogues.

Introduction

The chemicals 3H-1,2-dithiole-3-thione (D3T), 4-methyl-5-pyrazin-
yl-3H-1,2-dithiole-3-thione (OLT) and 5-tert-butyl-3H-1,2-dithiole-
3-thione (TBD) are dithiolethione class chemopreventive agents that

have been shown to inhibit chemical toxicity and carcinogenicity in
many target organs (1). They continue to be under preclinical and
clinical investigations for use as cancer chemopreventive agents in
humans (2). The three compounds are known to activate the Kelch-
like erythroid cell-derived protein with Cap ‘n’ collar homology
(ECH)-associated protein 1–nuclear factor, erythroid derived 2-related
factor 2 (Nrf2)-signaling pathway (3,4). Kelch-like ECH-associated
protein 1 sequesters Nrf2 through binding to the N-terminal regula-
tory domain of Nrf2 in the cytoplasm (5). Administration of sulfhydryl
reactive compounds such as diethylmaleate, sulforaphane or D3T abol-
ishes Kelch-like ECH-associated protein 1 repression of Nrf2 activity,
facilitating the translocation and accumulation of Nrf2 in the nucleus
(4,6,7). As a transcription factor, Nrf2 binds to the antioxidant response
element, forms heterodimers with small Maf (v-maf, avian musculoa-
poneurotic fibrosarcoma oncogene homolog) proteins and regulates the
expression of antioxidant response element-containing genes (6,7). The
induction of these cytoprotective proteins enhances resistance against
electrophiles, oxidative stress and chemical toxicants (8).

Several studies of OLT have evaluated the pharmacodynamics of
this compound in cancer chemoprevention (9). Additional clinical
trials were conducted in Qidong, Jiangsu Province, People’s Republic
of China (10–12). These trials were randomized, placebo-controlled
and double-masked studies. In a Phase IIa chemoprevention trial, high
dose OLT (500 mg/week) inhibited bioactivation of aflatoxin B1

(AFB1), whereas sustained low dose OLT (125 mg/day) increased
conjugation of AFB1 epoxide, leading to increased rates of excretion
of aflatoxin–mercapturic acid in urine (12).

TBD is a recent lead dithiolethione compound for cancer chemo-
prevention. In 2003, Roebuck et al. (2) compared the cancer chemo-
preventive potency of several dithiolethione analogues in male F344
rats. In this study, D3T, OLT and TBD were shown to attenuate the
hepatic burden of AFB1-induced preneoplastic lesions. Relative po-
tency estimates were obtained by comparing the doses of dithiole-
thiones required to reduce the focal volume percent to 0.1% of the
liver volume. D3T proved to be the most potent agent, whereas TBD
was equipotent with OLT. Furthermore, it was suggested that TBD may
be a more useful chemopreventive agent than OLT because of features
that may make it less toxic, specifically the difference in its wavelength
absorption and the lack of a pyrazine ring, as well as relative ease and
yield of synthesis (2) (see Figure 1A for chemical structures).

Here, we apply a robust chemical genomics approach to compare
and contrast the gene expression activities of D3T, OLT and TBD. We
show that this procedure is simultaneously able to identify treatment-
responsive genes and the known pharmacological relationships that are
common among, and distinct between, the treatment groups. Furthermore,
we show that the distinct gene clusters, indicative of unique structure–
activity relationships, capture the activities of additional pharmacophores
present in the chemical analogues in this chemical series.

Materials and methods

Animal treatments

Male Fischer F344 rats (80–100 g) were obtained from Harlan Laboratories
(Indianapolis, IN) at 6 weeks of age. The chemicals and procedures for animal
care were described previously in detail (13). Animals were randomly assigned
into four groups of four animals for each treatment by gavage with 100 ll of
vehicle (saturated sucrose), D3T (0.3 mmol/kg body wt), OLT (0.3 mmol/kg
body wt) or TBD (0.3 mmol/kg body wt), once every other day over 5 days.
Animals were killed 24 h after the third dose and the liver tissues were snap
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frozen. The protocol for this study was approved by the Animal Care and Use
Committee of the Johns Hopkins University, where the animals were treated.

RNA procedures

Total RNA was isolated from the frozen liver tissue using STAT-60 (Tel-Test,
Friendswood, TX). Affymetrix RG-U34A chips (containing 8799 probe sets)
were used to measure the messenger RNA levels as described previously (13).
The Affymetrix dataset was submitted to the Gene Expression Omnibus data-
base, GSE8882. Real-time reverse transcriptase–polymerase chain reaction
(RT–PCR) was performed as described previously (13). The Ct values for all
genes were normalized to that of b-actin, and the relative value for the control
samples was set as one arbitrary unit.

Cytochrome P450 1A2 inhibition assays

Cytochrome P450 (CYP) 1A2 inhibition assay for 7-ethoxyresorufin
O-deethylase activity, 1 ml each, contained 5 pmol of human microsomal
CYP1A2 (BD Biosciences, San Jose, CA), 1.4 mM reduced nicotinamide

adenine dinucleotide phosphate and 0.2 lM of the substrate, 7-ethoxyresorufin
in 0.1 M KPO4 buffer, pH 7.4. D3T, OLT and TBD were dissolved in dimethyl
sulfoxide and added at concentrations of 0, 1, 3, 10, 30 and 100 lM. The
reactions were incubated for 15 min at 37�C, stopped by the addition of 2 ml
of ice-cold methanol, vortexed and then centrifuged for 5 min at 4302g. The
formation of product was determined fluorometrically against a standard of
resorufin, using a Varian Cary Eclipse fluorescence spectrophotometer (EL
0206-5717) with an excitation and emission wavelength of 530 and 585 nm,
respectively.

Data analysis

Microarray data were preprocessed by GC-Robust Multi-array Average (14).
Affymetrix Microarray Suite 5.0 was used to detect the presence and absence
of gene expression (15). Genes that were present in 75% of any treatment group
were selected using a Perl program. The Kruskal–Wallis (KW) procedure, per-
mutation tests and the recursive procedure were implemented using JAVA. In the

Fig. 1. (A) Space filling models of the three dithiolethiones: [1] D3T, [2] OLT and [3] TBD. The atoms are identified by colors: sulfur, yellow; carbon, dark gray;
hydrogen, light gray; nitrogen, blue. (B) PCA of gene expression using the treatments as variables. The Eigen values of the principal component 1, 2, 3 and 4 are
17.513, 9.863, 5.196 and 0, respectively. The first three principal components contain over 98% of the total variance in the data. (C) PCA of gene expression color
coded for the patterns identified in Table I, containing greater than six genes (right box). (D) Biological network common to D3T, OLT and TBD treatments. The
intensity of the node color indicates the degree of upregulation (red) or downregulation (green). The lower legend box (blue) indicates the node shapes in order of
complex, enzyme, group, transcription regulator and relation. The upper legend box indicates the relationships between two nodes. (E) Inhibition of CYP1A2
catalyzed 7-ethoxyresorufin-O-deethylase by D3T, OLT and TBD. The concentrations of the substrate (7-ER, 7-ethoxyresorufin) and the inhibitors are shown at
the bottom.
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current Affymetrix technology, one gene may be represented by more than one
probe set. For these redundant probe sets, only the probe sets with the most
numbers of smallest pairwise comparison P-values were kept for further analy-
sis. Principal component analysis (PCA) was performed according to Raychaud-
huri et al. (16). Eigen values for PCA were calculated using Cluster 3.0 (17).
SigmaPlot 10.0 (Systat Software, Inc., Chicago, IL, 2002) was used to produce
three-dimensional PCA plots with color-coded clusters. Analysis of variance
(ANOVA) was performed using a National Institute on Aging Array Analysis
Tool (18). Gene ontology (GO) enrichment analysis was performed using Gene
Ontology Enrichment Analysis Software Toolkit (19). The significant of each
GO class was determined by its P-value using default criteria. Biological net-
work and pathway analysis were performed using ingenuity pathway analysis
software (Ingenuity System, Redwood City, CA). Common transcription factor-
binding sites (TFBSs) in promoters of coregulated genes were identified using
conserved and overrepresented transcription factor binding sites (CORE_TF)
(20). Ensembl gene IDs were used as input into CORE_TF. A 5# flanking region
of 2 kb upstream to 1 kb downstream of the transcription start site was designated
as an experimental promoter set since most of TFBSs are located within these
regions. A random set of 3000 promoters from rat species was selected to be
compared with the experimental set in searching for overrepresented TFBSs
(20).

Statistical methods

To ensure robustness, we used the KW rank procedure, which does not require
assumptions of data distribution. To account for the small number of replica-
tions, exact P-values of the KW tests were computed using a permutation
resampling method (21) to perform 1.0E6 permutations. For each gene with
a significant KW test, post-hoc analyses were performed to identify the pairs of
treatments with significantly different expression values using the Wilcoxon
rank-sum tests. Since the number of replication per treatment group is small,
exact P-values of the Wilcoxon tests were computed by a recursive procedure
(22). False discovery in the multiple testing was controlled with the false
discovery rate (FDR) procedure (23). Based on the results of the post-hoc
pairwise comparisons, we clustered the gene responses in relation to treatment
effects by applying a hierarchical procedure developed by Sutter et al. (24).
Specifically, for testing H0: lag 5 lbg versus H1: lag , lbg, where ltg denotes
the expected value of the expression of gene g under treatment t, we use the
recurrence relation (22) to compute the exact P-value Pn,m(rg), where rg is the
rank sum of the n expression values of gene g under treatment a and m is
the number of replications under treatment b. If Pn,m(r) � a, then la , lb
and a 2 was assigned to the result of the comparison (upregulated genes).
Another possibility was H1: la . lb. The P-value for this test was computed
by 1 � Pn,m(r � 1). If this P-value was not .a, then la . lb and a 0 was
assigned (downregulated genes). When both Pn,m(r) and 1 � Pn,m(r � 1) were
.a, the null hypothesis was accepted and a 1 was assigned to the result (no
change).

Results and discussion

Clustering of microarray data

Normal probability plots and Kolmogoroff–Smirnov tests (25,26)
demonstrated that the raw gene expression values, as well as the
log-transformed expression values, were not normally distributed
(data not shown). Therefore, a non-parametric procedure was used
to test the differences among the expression levels of each gene under
four treatment conditions. After controlling for FDR, 431 significant
probe sets were identified. A recursive procedure was then applied to
detect differences occurring between any two treatments. An illustra-
tion of this analysis is shown for one gene (supplementary Table I is
available at Carcinogenesis Online), Gstp1. After resolving the re-
dundant probe sets, the number of significant genes was reduced from
431 to 367 genes. The genes were then clustered according to their
responses to the treatments. For four treatments, there were six pair-
wise comparisons and 219 possible clusters (24). A 1 was assigned to
all insignificant comparisons and 2563 probe sets had the 111111
patterns of pairwise comparisons. The remaining 367 genes were
binned into 64 additional clusters (Table I).

Comparison with ANOVA

By comparison, the non-parametric and ANOVA methods appeared to
detect similar differences in gene expression (supplementary Table II

is available at Carcinogenesis Online), with 93% of the probe sets
identified by both methods. However, the ANOVA method identified
many more significant probe sets (761 versus 431). As the assumption
of normality was not supported, we explored this issue in more detail
by RT–PCR. From the results of each procedure, we selected the five
genes whose FDR P-values were closest to the cutoff threshold (sup-
plementary Table III is available at Carcinogenesis Online). RT–PCR
was performed on each sample, and Pearson correlation analysis was
performed between the microarray and RT–PCR results. We observed
a strong correlation between the expression values for the genes iden-
tified by the non-parametric method (R 5 0.8576, P-value 5 0.0001)
(supplementary Figure 1A is available at Carcinogenesis Online).
However, for the genes selected from ANOVA, the correlation of
the expression values between microarray and RT–PCR was low
(R 5 0.0879, P-value 5 0.446) (supplementary Figure 1B is avail-
able at Carcinogenesis Online). These results support the robust-
ness of the non-parametric method and provide confidence in the
identification and clustering of genes by this procedure, thereby
reducing biological noise in the subsequent functional analysis of
this data.

PCA

The resolution of our chemical genomics approach was revealed by
comparison with PCA, a statistical technique for dimension reduction
in multivariate data sets, often used to cluster genes with similar ex-
pression profiles (18,27). PCA allows one to observe graphically the
key variables of the differences in the gene observations. In this study,
experimental treatments were the variables. The percentage variance
from PCA showed that the first three components captured most of the
information about the observed variability in this experiment. Shown
in Figure 1B is the plot of the first three principal components for
genes in clusters containing more than six genes, in order to show
a clearer view of the data. In Figure 1B, PCA identified only two large
clusters that appeared close to one another. However, if we color code
these genes (Figure 1C) using the clusters identified by our method
(Table I), we observe that the two major groups of genes identified by
PCA are identified by our method as upregulated (red and gray tones)
and downregulated (green and yellow tones) genes, relative to control.
For example, clusters 211001 (dark red) and 011221 (yellow) repre-
sent genes showing increased or decreased expression in response to
only treatment with D3T. Moreover, we observe that the distinct
clusters identified by our procedure tend to group in distinct regions
of the PCA plot. This observation indicates a general concordance of
these two methods, with our method producing a much finer cluster,
expressing an explicit pharmacological relationship between re-
sponses and treatments (Figure 1C). For example, clusters 122221
(blue) and 100001 (cyan) represent genes that, although D3T is the
most efficacious chemical among the three (2), respond only to OLT
and TBD. This unique ability to identify distinct clusters in a series of
closely related chemical structures clearly demonstrates the strength
of our procedure for chemical genomic applications.

Common pharmacodynamic action of D3T, OLT and TBD

The shared structure–activity relationships of the three dithiolethiones
(Figure 1A) was observed in the clusters containing the most respon-
sive genes, clusters 1–8 and 54–65 (patterns 222xxx and 000xxx)
consisting of 68 upregulated genes and 158 downregulated genes,
respectively (Table I). As D3T, the parent compound, is known to
activate the Nrf2 pathway, this observation was expected. Included
in the upregulated genes were those known to be mechanistically
important to the prevention AFB1 carcinogenesis, including glutathi-
one S-transferase (GST) Yc2 subunit and AFB1 aldehyde reductase,
as well as other well-known Nrf2-regulated genes including NAD(P)H
quinone oxidoreductase 1 (Nqo1), Gstp1 and uridine diphosphate glu-
curonosyltransferase 1 family, polypeptide A6 (UGT1A6) (2,6,28).

Functional analysis of the 226 genes in the 222xxx and 000xxx
clusters by GO enrichment (19) identified metabolic process and
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glutathione transferase activity in the top three significant GO classes
(Table IIA). Similarly, ingenuity pathway analysis identified glutathi-
one metabolism and metabolism of xenobiotics among the top signif-
icant canonical pathways (Table IIB). Also among these canonical
pathways was Nrf2-mediated oxidative stress response, a well-known
regulator of D3T activity (3,4,6,7,29). The biological network corre-
sponding to Nrf2 was also enriched and is shown in Figure 1C as the
major network enriched by D3T, OLT and TBD. In this network,
genes involved in glutathione metabolism such as GST, Gstp1, GSTt1,
Gsta3, GSTm1, microsomal GST2 (MGST2) and GSTk1 were
increased. Thus, there was good agreement between the GO and
ingenuity pathway analysis for the genes common to these three
compounds.

Promoter analysis of the 226 common genes also indicated that
these genes were regulated by Nrf2. Among these 226 genes, 191
(84.5%) are well annotated and CORE_TF was able to retrieve their
promoter sequences for the analysis. There was a significant over-
representation (P-value , 0.05, after correction for FDR) for the
Nrf2 matrix NRF2_Q4 in 189 of 191 (98.9%) experimental promoters
(supplementary Table IV is available at Carcinogenesis Online).

The efficacies of OLTand TBD are similar and both weaker than D3T

As the test compounds were administered in equal molar doses, a lower
efficacy of OLT, relative to D3T and TBD, was observed in clusters
13–17 and 42–47 (patterns 212xxx and 010xxx) containing 48 genes
(Table I). These genes did not change in response to OLT, indicating
that OLT was less efficacious in the response of these genes, a finding
consistent with the study of Roebuck et al. (2) for other end points. Of
the observed clusters, a large portion (three of five in clusters 13–17
and four of six in clusters 42–47) showed no response to either OLT or
TBD. This observation is also consistent with the reported efficacies of
these compounds, which indicates that OLT and TBD are weaker than
the parent compound, D3T (2). Similarly, clusters showing the greater
efficacy of D3T were also observed, i.e. the 16 genes that responded
only to D3T (patterns 211xxx and 011xxx). Finally, there were 23
genes that responded to OLT and D3T, but not to TBD (patterns
221xxx and 001xxx). Collectively, these data support the current un-
derstanding that D3T is the most efficacious of the three compounds,
with the observed efficacies of D3T \ TBD � OLT.

Unique OLTand TBD gene clusters indicate novel pharmacodynamic
action

While the common clusters discussed above contained 89% of the
statistically significant genes, the remaining 11% of the responding
genes identified two unique sets of clusters, 20–23 and 31–35 (pat-
terns 122xxx and 100xxx), containing 40 genes responding to OLT
and TBD, but not to D3T (Table I).

Two of the most highly induced genes in this set were Cyp2b6 and
Cyp2b19, elevated 11- and 7-fold, respectively. Two previous studies
have shown that OLT induces members of multiple families of CYP,
especially the CYP1A and Cyp2b6 families in livers of rat (24,30).
Furthermore, it has been proposed that the induction of these genes
may be related to the inhibitory properties of OLT toward hepatic
CYP (31). One explanation for this observed activity of OLT for
CYP enzyme induction is its unique structure, compared with the
unsubstituted parent dithiolethione, D3T (24). As shown in Figure
1A, OLT contains a 5-pyrazinyl substituent on the dithiolethione ring.
This nitrogen-containing, electron-withdrawing ring is believed to
make OLT an inhibitor of hepatic CYP (24). To explore this property
in light of the previously identified OLT cluster associated with in-
hibition of CYP (24), we determined the relative potencies of D3T,
OLT and TBD for inhibition of CYP1A2-catalyzed 7-ethoxyresorufin-
O-deethylase (Figure 1E). The rank order of inhibitor potency was
OLT � TBD � D3T, with half maximal inhibitory concentration
values estimated as 0.2, 12.8 and .100 lM, respectively. Although
the relatively high and multiple doses of 0.3 mmol/kg body wt did not

Table I. The clusters of genes whose patterns identify responses to
treatments

Cluster Patterna Number of genes

CD CO CT DO DT OT

1 2 2 2 2 2 1 3
2 2 2 2 1 2 1 5
3 2 2 2 1 1 1 27
4 2 2 2 1 0 1 8
5 2 2 2 1 0 0 1
6 2 2 2 0 1 2 1
7 2 2 2 0 1 1 9
8 2 2 2 0 0 1 14
9 2 2 1 2 1 0 1
10 2 2 1 1 0 1 2
11 2 2 1 0 1 1 2
12 2 2 1 0 0 1 8
13 2 1 2 1 1 2 1
14 2 1 2 1 0 1 2
15 2 1 2 0 1 2 2
16 2 1 2 0 1 1 3
17 2 1 2 0 0 1 3
18 2 1 1 0 1 1 1
19 2 1 1 0 0 1 5
20 1 2 2 2 2 1 9
21 1 2 2 2 1 1 3
22 1 2 2 1 2 1 4
23 1 2 2 1 1 1 1
24 1 2 1 2 1 1 1
25 1 2 1 2 1 0 1
26 1 1 2 2 2 2 1
27 1 1 1 1 1 1 2563
28 1 1 0 1 0 1 1
29 1 1 0 1 0 0 2
30 1 0 1 0 1 1 1
31 1 0 0 1 0 1 4
32 1 0 0 1 0 0 2
33 1 0 0 0 1 1 4
34 1 0 0 0 0 1 12
35 1 0 0 0 0 0 1
36 0 2 2 2 2 1 3
37 0 2 1 2 2 1 1
38 0 2 0 2 1 0 1
39 0 1 2 2 2 1 1
40 0 1 1 2 2 1 9
41 0 1 1 2 2 0 1
42 0 1 0 2 2 1 11
43 0 1 0 2 1 1 9
44 0 1 0 2 1 0 11
45 0 1 0 1 2 1 1
46 0 1 0 1 1 1 4
47 0 1 0 1 1 0 1
48 0 0 2 1 2 2 1
49 0 0 1 2 2 1 3
50 0 0 1 1 2 2 2
51 0 0 1 1 2 1 1
52 0 0 1 1 1 1 2
53 0 0 1 0 1 1 2
54 0 0 0 2 2 1 9
55 0 0 0 2 1 1 29
56 0 0 0 2 1 0 1
57 0 0 0 1 2 2 1
58 0 0 0 1 2 1 6
59 0 0 0 1 1 2 1
60 0 0 0 1 1 1 74
61 0 0 0 1 1 0 6
62 0 0 0 1 0 1 12
63 0 0 0 1 0 0 4
64 0 0 0 0 1 1 13
65 0 0 0 0 0 1 2

aCD, control versus D3T; CO, control versus OLT; CT, control versus TBD;
DO, D3T versus OLT; DT, D3T versus TBD; OT, OLT versus TBD.
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permit discrimination of the potential differences between OLT and
TBD in this regard, our results do show that the dose–response rela-
tionships for enzyme inhibition and Nrf2 activation by these chem-
icals are quite different. If this unique action of OLT and TBD proves
to be an important consideration in their use as prophylactic agents,
then further studies to explore the dose–response relationships and
mechanism of this response could be performed.

In order to further explore this unique activity, functional analysis
of these 40 genes was performed (Table IIC). The top four significant
biological functions were related to molecular transport, including
molecular transport (P 5 3.2 � 10�4), carbohydrate metabolism
(P 5 5.4 � 10�4), drug metabolism (P 5 8.1 � 10�4) and small-
molecule biochemistry (P 5 8.1 � 10�4). Of interest, most of the
downregulated genes in these categories were related to lipid metab-
olism, especially fatty acids. Of these genes, two are known regulators
of the accumulation of triglycerides: the transcription factor nuclear
receptor subfamily 0, group B, member 2 (Nr0b2, decreased 3-fold)
and the regulator interferon-related developmental regulator 1 (Ifrd1,
decreased 3-fold) (32–34). In addition, several genes involved in fatty
acid biosynthesis were also decreased including 2-hydroxyacyl-CoA
lyase 1 (Hacl1, decreased 7.5-fold), acetyl-CoA C-acetyltransferase
(Acat1, decreased 1.6-fold), alcohol dehydrogenase 1 (Adh1, de-
creased 2.6-fold) (35) and solute carrier family 25 member 10
(Slc25a10, decreased 1.3-fold) (36). Two additional genes important
in the control of gluconeogenesis and fat deposition were also down-
regulated, phosphoenolpyruvate carboxykinase 1 (Pck1, decreased
2-fold) and glucose-6-phosphate transporter member 4 (Slc37a4, de-
creased 1.4-fold) (37). In addition, adiponectin receptor 2 (Adipor2,
increased 6-fold) and 3-hydroxy-3-methylglutaryl-coenzyme A syn-
thase 2 (Hmgcs2, decreased 1.4-fold) play central roles in the regu-
lation of glucose and lipid metabolism (38,39).

Promoter analysis was performed on the 40 coexpressed genes
to look for common TFBSs. Of the 40 genes, 32 (80%) had well-
annotated transcription start sites and could be used for further analysis
using CORE_TF. The top two overrepresented TFBSs were the perox-
isome proliferator-activated receptors (PPARs), PPARc and PPARa
(Table III). There were 30 genes (93.8%) and 26 genes (81.3%) with

TFBSs for PPARc and PPARa, respectively (supplementary Table V is
available at Carcinogenesis Online). These genes include Nr0b2, Pck1,
Slc37a4, Acat1, Slc25a10, Adipor2, Adh1, Hmgcs2 and Hacl1 (also
known as phytanoyl-CoA 2-hydroxylase 2, Phyh2), which were asso-
ciated with lipid metabolism. Studies have shown that Acat1, Slc25a10,
Adipor2 and Hmgcs2 are PPARa-regulated genes (38,40), whereas
Nr0b2 and Pck1 are mediated by PPARc (41,42). The PPAR nuclear
receptors play important roles in the regulation of carbohydrate, lipid
and protein metabolism, inflammation and adipocyte differentiation.
PPARa is highly expressed in liver where it stimulates fatty acid oxi-
dation and ketogenesis (43). It also regulates the peroxisome and mi-
tochondrial fatty acid oxidation pathway. PPARc is expressed at low
levels in the liver, but can be upregulated by PPARc activators. These
same activators can suppress carcinogenesis in animal models (43,44).

In mice, OLT has been shown to increase the expression of
Cyp2b10 by a constitutive androstane receptor-mediated mechanism
(45), which could account for the observed induction of Cyp2b6 mes-
senger RNAs here. However, the constitutive androstane receptor
TFBS was not significantly represented in the 40 gene set. In rat
hepatocyte H4IIE cells, OLT has been shown to increase the expres-
sion of the GSTA2 via enhanced binding of the CCAAT/enhancer-
binding protein (C/EBP) b (46). Although the C/EBPb TFBS was not
significantly represented in the 40 gene set, a recent study shows that
.1000 genes are coregulated by PPARc and C/EBPa or C/EBPb
during adipocyte differentiation, indicating a strong co-operation of
these factors (47). Another study showed that the PPARc activator,
15-deoxy-D12,14-prostaglandin J2 (15d-PGJ2), increased the expres-
sion of GSTA2, which was lost by deletion of either the C/EBPb-
or PPAR-responsive enhancers, indicating that these factors interact in
the regulation of this gene (48).

In another study, 15d-PGJ2 was shown to activate Nrf2, as well as
PPARc (49), demonstrating that such chemicals may activate multiple
nuclear receptors in the liver, adding to the complexity of their effects.
Combined genetic and chemical genomic studies will be necessary to
understand the mechanisms of action of such chemicals. The infor-
mation and procedures described here should aid in the design and
analysis of such studies.

Table II. GO and functional analyses of the 226 genes regulated by D3T, OLT and TBD and the 40 genes regulated by OLT and TBD only

A
GO ID GO term q m t K P-value

GO:0008152 Metabolic process 62 3872 8799 75 1.7 � 10�10

GO:0006412 Translation 16 216 8799 75 3.8 � 10�10

GO:0004364 Glutathione transferase
activity

8 31 8799 75 4.8 � 10�10

B
Canonical pathway P-value D3T-, OLT- and TBD-regulated genes

Metabolism of xenobiotics by CYP 5.0 � 10�11 GSTa3, GSTm1, GSTt1, GSTp1, UGT2B4, UGT1A6, CYP2C18,
MGST2, CYP2A12, UGT2B17, GSTk1

NRF2-mediated oxidative stress response 1.9 � 10�09 AKR7A2, GSTa3, AKR7A3, GSTm1, GSTt1, GSTp1, AKR1A1,
FTL, MGST2, Nqo1, GSTk1

Xenobiotic metabolism signaling 8.5 � 10�09 GSTa3, GSTm1, GSTp1, FTL, UGT1A6, Nqo1, GSTt1, MGST2,
UGT2B4, UGT2B17, GSTk1, MAOA

Glutathione metabolism 1.7 � 10�08 GSTa3, GSTm1, GSTt1, GSTp1, MGST2, IDH2, GSTk1

C
Biological functions P-value OLT- and TBD-regulated genes

Molecular transport 3.6 � 10�4 Ifrd1, SLC34A1, Nr0b2, COMT, Slc37a4, Adh1, Acat1, HSP90AA1,
Slc25a10, Cyp2b6, Pck1

Carbohydrate metabolism 5.4 � 10�4 Slc37a4, Slc25a10, Pck1, SDS
Drug metabolism 8.1 � 10�4 SLC34A1, CYP2C18, COMT, Adh1, Cyp2b6, HSD17B2
Small molecule biochemistry 8.1 � 10�4 SLC34A1, Adh1, Pck1, Hacl1, Hmgcs2, FAH, Ifrd1, ATPIF1, Nr0b2,

CYP2C18, BCKDHA, COMT, Slc37a4, Acat1, Slc25a10, Cyp2b6, SDS,
HSD17B2, LTB4DH, Cyp2b19

q, the number of probe sets in the list responding to D3T, OLT and TBD and associated with the GO term; m, number of probe sets on the chip associated with the
GO term; t, total number of probe sets on the chip; K, number of probe sets in the input list for GO enrichment analysis.
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